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Abstract

The present paper deals with the study of the propagation of Rayleigh surface waves in homogeneous isotropic,

thermodiffusive elastic half-space. After developing the formal solution of the model, the secular equations for stress free,

thermally insulated or isothermal, and isoconcentrated boundary conditions of the half-space have been obtained. The

secular equations have been solved by using irreducible Cardano’s method with the help of DeMoivre’s theorem in order to

obtain phase velocity and attenuation coefficient of waves under consideration. The motion of the surface particles during

the Rayleigh surface wave propagation is also discussed and found to be elliptical in general. The inclinations of wave

normal with the major axis of the elliptical path of a typical particle have also been computed. Finally, the numerically

simulated results regarding phase velocity, attenuation coefficient, specific loss and thermo-mechanical coupling factors of

thermoelastic diffusive waves have been obtained and presented graphically. Some very interesting and useful

characteristics of surface acoustic waves have been obtained, which may help in improving the fabrication quality of

optical and electronic devices in addition to construction and design of materials such as semiconductors and composite

structures. Therefore, this work finds applications in the geophysics and electronics industry.

r 2008 Published by Elsevier Ltd.
1. Introduction

Diffusion is the spontaneous movement of matter (particles), from a region of high concentration to low
concentration. Diffusion occurs in response to a concentration gradient expressed as the change in
concentration due to a change in position. The example of diffusion is heat transport or momentum transport.
The net flux of a transported quantity (atoms, energy, or electrons) is equal to a physical property (diffusivity,
thermal conductivity, and electrical conductivity) multiplied by a gradient (concentration, thermal, and
electric field gradient). Nowadays, there is a great deal of interest in the study of this phenomenon due to its
applications in the geophysics and electronic industry. Technologies based on diffusion waves have improved
biomedical diagnostics and the fabrication of optical and electronic devices. In integrated circuit fabrication,
ee front matter r 2008 Published by Elsevier Ltd.

v.2008.01.011

ing author. Tel.: +911972 23296; fax: +91 1972 23834.

esses: jns@nitham.ac.in (J.N. Sharma), yds@nitham.ac.in (Y.D. Sharma), pars1sharma@yahoo.com (P.K. Sharma).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.01.011
mailto:jns@nitham.ac.in
mailto:yds@nitham.ac.in
mailto:pars1sharma@yahoo.com


ARTICLE IN PRESS
J.N. Sharma et al. / Journal of Sound and Vibration 315 (2008) 927–938928
diffusion is used to introduce ‘‘dopants’’ in controlled amounts into the semiconductor substance. In
particular, diffusion is used to form the base and emitter in bipolar transistors, integrated resistors, and the
source/drain regions in MOS transistors and dope polysilicon gates in MOS transistors. Thermal diffusion
utilizes the transfer of heat across a thin liquid or gas to accomplish isotope separation. Today, thermal
diffusion remains a practical process to separate isotopes of noble gases (e.g. xenon) and other light isotopes
(e.g. carbon) for research purposes. In most of the applications, the concentration is calculated using what is
known as Fick’s law. This is a simple law that does not take into consideration the mutual interaction between
the introduced substance and the medium into which it is introduced or the effect of the temperature on this
interaction. However, there is a certain degree of coupling with temperature and thermal gradients as
temperature speeds up the diffusion process. The thermoelastic diffusion in elastic solids is due to coupling of
the fields of temperature, mass diffusion (MD) and that of strain in addition to heat and mass exchange with
the environment. Angstrom [1] was the first to publish an experimental and theoretical study of diffusion
waves. In this pioneering work, he calculated the thermal diffusivity of solids as measured by periodically
heating a long bar and then detecting the alternating temperature field at a point in the bar some distance
away from the heat source. Nowacki [2–5] developed the theory of thermoelastic diffusion by using a coupled
thermoelastic model. Dudzviak and Kowalski [6] and Olesiak and Pyryev [7], respectively, discussed the theory
of thermo diffusion and coupled quasi-stationary problems of thermal diffusion for an elastic cylinder. They
studied the influence of cross effects arising from the coupling of the fields of temperature, MD, and strain due
to which the thermal excitation results in additional mass concentration and this generates additional fields of
temperature.

During the last three decades, nonclassical theories of thermoelasticity called ‘‘Generalized thermo-
elasticity’’ have been developed in order to remove the paradox of physically impossible phenomenon of
infinite velocity of thermal signals in the conventional coupled thermoelasticity. Lord and Shulman [8]
formulated a generalized theory of thermoelasticity with one thermal relaxation time, which involves a
hyperbolic equation of heat transportation, by incorporating a flux-rate term into Fourier’s law of heat
conduction. Green and Lindsay [9] developed a temperature-rate-dependent thermoelasticity that includes two
thermal relaxation times and does not violate the classical Fourier law of heat conduction, when the body
under consideration has a center of symmetry. The Lord and Shulman [8] theory of generalized
thermoelasticity was further extended to homogeneous anisotropic heat conducting materials by Dhaliwal
and Sherief [10]. All these theories predict a finite speed of heat propagation. Chandrasekharaiah [11] referred
to this wave-like thermal disturbance as ‘‘second sound’’. A survey article of various representative theories in
the range of a generalized thermoelasticity was brought out by Hetnarski and Ignaczak [12]. The propagation
of thermoelastic Rayleigh waves has been discussed in detail by Nayfeh and Nasser [13] in the context of
generalized theory of thermoelasticity developed by Lord and Shulman [8].

The recent development of generalized theory of thermoelastic diffusion by Sherief et al. [14] allows the
finite speed of propagation of waves and it provides a chance to study wave propagation in such interesting
media. They derived governing equations for generalized thermo diffusion in elastic solids and also proved
variational principles and reciprocity theorems for these equations. The uniqueness of solution for these
equations under suitable conditions is also established. Singh [15,16] investigated the reflection of P and SV
waves from the free surface of elastic solids with generalized thermo diffusion. Sharma [17] studied the
propagation of plane harmonic generalized thermoelastic diffusive waves in heat-conducting solids. It is found
that there are three longitudinal waves, namely, elastodiffusive (ED), MD-mode) and thermodiffusive
(TD-mode) which are possible to propagate in such solids in addition to decoupled transverse waves.
According to Achenbach [18], unlike the hyperbolic solution, the classical solution shows no distinct wave
front and temperature increase start initially. However, the difference in the predicted temperature between
the two theories is small and is apparent for very small time scales (of the order of 100 ps). These time scales
are large enough for the solution given by both theories to be numerically undistinguishable. Consequently,
the selection of the theory for the time scale of interest can be done for convenience with no practical effect on
the calculated results.

Keeping in the mind the above applications of TD processes, the propagation of elasto-TD waves have been
investigated in this paper. The secular equation for Rayleigh-type surface waves have been obtained in
simplest form and in closed mathematical conditions. The phase velocity and attenuation coefficient of wave
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propagation have been computed from the secular equations by using irreducible Cardano’s method with the
help of DeMoivre’s theorem and the functional iteration technique. Although there is a precise numerical
technique to solve the Rayleigh wave frequency equation, which can avoid the missing root developed by Gao
et al. [19], we have used a hybrid of direct and iterative techniques to solve secular equation in which the scope
of root missing is negligible. The specific loss and thermo-mechanical coupling factors have also been
determined. The surface displacement components, temperature change, and mass concentration of the
surface particles have been obtained during Rayleigh wave propagation in addition to the discussion of
surface particle motion. The results have also been computed numerically and presented graphically.
2. Formulation of the problem

We consider a homogeneous isotropic, thermo diffusive, elastic half-space initially at uniform temperature
T0 and concentration C0. We take any point O as the origin of the rectangular Cartesian coordinate system
and the z-axis pointing vertically downward in the half-space, which is thus represented by zX0. We take the
x-axis along the direction of wave propagation in such a way that all the particles on a line parallel to the
y-axis are equally displaced. Then all the field quantities are independent of y. The surface z ¼ 0 is assumed to
be stress free, thermally insulated or isothermal and isoconcentrated. We consider the waves of small
amplitudes and assume that disturbances are confined to the neighborhood of the free surface (z ¼ 0).
The basic governing equations in the context of the linear theory of generalized TD elastic solids, for the
displacement vector ~uðx; z; tÞ ¼ ðu; 0;wÞ, temperature change T(x, z, t) and mass concentration C(x, z, t) in the
absence of body forces and heat sources are given by Sherief et al. [14] as follows:

mr2~uþ ðlþ mÞrðr �~uÞ � b1rT � b2rC ¼ r€~u (1)

Kr2T � rCeð _T þ t0 €TÞ � b1T0r:ð_~uþ t0 €~uÞ � aT0ð _C þ t0 €CÞ ¼ 0 (2)

r2C �
1

Db
ð _C þ t1 €CÞ �

b2
b

T0r
2ðr � _~uÞ �

a

b
r2T ¼ 0 (3)

where b1 ¼ ð3lþ 2mÞaT ; b2 ¼ ð3lþ 2mÞaC ; aT and aC are the coefficients of linear thermal expansion and
linear diffusion expansion; l and m are Lame’s parameters; r, Ce, and K are, respectively, the density, specific
heat at constant strain and thermal conductivity; and a and b are thermo-diffusive and diffusive constants,
respectively. Here, t0 and t1 are thermal relaxation times.

We define the quantities

x0 ¼
onx

CL

; z0 ¼
onz

CL

; t0 ¼ ont; u0 ¼
ronCLu

b1T0
; w0 ¼

ronCLw

b1T0
; T 0 ¼

T

T0
; C0 ¼

C

C0

on ¼
Ceðlþ 2mÞ

K
; �T ¼

T0b
2
1

rCeðlþ 2mÞ
; d2 ¼

C2
S

C2
L

; b̄ ¼
b2C0

b1T0
; �c ¼

b1b2T0

C0b ðlþ 2mÞ

C2
L ¼

lþ 2m
r

; C2
S ¼

m
r
; t00 ¼ ont0; t01 ¼ ont1; ā ¼

aC0

rCe

; b̄ ¼
aT 0̄

bC0
; ōb ¼

C2
L

onDb
. (4)

On introducing quantities (4) in Eqs. (1)–(3), we obtain

d2r2~uþ ð1� d2Þrðr �~uÞ � rT � b̄rC ¼ €~u (5)

r2C � ōbð _C þ t1 €CÞ � �Cr
2ðr �~uÞ � b̄r2T ¼ 0 (6)

r2T � ð _T þ t0 €TÞ � �Tr � ð
_~uþ t0 €~uÞ � āð _C þ t0 €CÞ ¼ 0 (7)

where r ¼ ðq=qx; 0; q=qzÞ and r2 ¼ ðq2=q2xÞ þ ðq2=q2zÞ are the gradient and Laplacian operators. Here,
primes have been suppressed for convenience.
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3. Boundary conditions

The non-dimensional boundary conditions to be satisfied at the surface z ¼ 0 are as follows:
(i)
 The normal components of stress tensor must vanish at the surface, which implies that

ð1� 2d2Þr �~uþ 2d2
qw

qz
� T � b̄C ¼ 0. (8)
(ii)
 The tangential components of stress tensor also must vanish. This leads to

qu

qz
þ

qw

qx
¼ 0. (9)
(iii)
 Mass concentration must vanish at the surface so that we have

C ¼ 0. (10)
(iv)
 The thermal boundary conditions on the surface are given by

qT

qz
þ hT ¼ 0 (11)
where h is the surface heat transfer coefficient. Here, ðh! 0Þ corresponds to the thermally insulated boundary
and ðh!1Þ refers to the isothermal one.

4. Solution of the problem

In order to solve the problem we introduce the potential functions j and c through the relations

u ¼
qj
qx
þ

qc
qz
; w ¼

qj
qz
�

qc
qx

. (12)

On using relations (12) in Eqs. (5)–(7), we obtain

r2j� €j� b̄C � T ¼ 0 (13)

r2c ¼
€c

d2
(14)

r2T � ð _T þ t0 €TÞ � �T ð _jþ t0 €jÞ � āð _C þ t0 €CÞ ¼ 0 (15)

r2C � ōbð _C þ t1 €CÞ � r
4j� b̄r2T ¼ 0. (16)

It is observed that the transverse motion represented by the function c gets decoupled from the rest of the
motion corresponding to the functions c, C, and T. We take the solution of the form

ðj;c;C;TÞ ¼ ð ~jðzÞ; ~cðzÞ; ~CðzÞ; ~TðzÞÞeixðx�ctÞ (17)

where c ¼ o/x is non-dimensional phase velocity, o and x are the non-dimensional circular frequency and
wavenumber, respectively. On using solution (17) in Eqs. (13)–(16) and solving the resulting system of
equations, the expressions for j, c, T, and C are obtained as

j ¼
X3
j¼1

ðAJe
mjz þ BJe

�mjzÞ

" #
eixðx�ctÞ (18)
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T ¼
X3
j¼1

SjðAJe
mj z þ BJe

�mjzÞ

" #
eixðx�ctÞ (19)

C ¼
X3
j¼1

V jðAJe
mjz þ BJe

�mjzÞ

" #
eixðx�ctÞ (20)

c ¼ ðA4e
bz þ B4e

�bzÞeixðx�ctÞ (21)

Sj ¼
o2½ð1� a2

j Þfð1þ b̄b̄Þa2
j � t1ōbg � b̄b̄a2

j f1� ð1þ �aÞa
2
j g�

ð1þ b̄b̄Þa2
j � t1ōb

(22a)

V j ¼
o2b̄a2

j ½1� ð1þ �aÞa
2
j �

ð1þ b̄b̄Þa2
j � t1ōb

(22b)

where m2
j ¼ x2ð1� a2

j c2Þ; j ¼ 1; 2; 3, a2 ¼ x2ð1� c2Þ

b2 ¼ x2 1�
c2

d2

� �
; t1 ¼ t1 þ io�1; t0 ¼ t0 þ io�1; �a ¼

�L

b̄
(23)

Here a2
j ; j ¼ 1; 2; 3 are roots of complex cubic equation

z3 � Lz2 þMz�N ¼ 0 (24)

where

L ¼
½1þ t1ōb þ t0fð1þ āb̄Þð1þ �aÞ þ ð1þ b̄b̄Þð�T � �aÞg�

ð1� �cb̄Þ
(25)

M ¼
t0ð1þ āb̄Þ þ t1ōbf1þ t0ð1þ �T Þg

ð1� �cb̄Þ
(26)

N ¼
t0t1ōb

ð1� �cb̄Þ
. (27)

As we are interested in the study of surface waves so the disturbance is assumed to be confined to the
boundary z ¼ 0 of the half-space. Therefore, we select the form of solutions (18)–(21) that satisfies
the radiation condition namely, Reðmj ; bÞX0, j ¼ 1; 2; 3. Thus, the required expressions for j, T, C, and c are
written as

j ¼
X3
j¼1

Bje
�mjzþixðx�ctÞ (28)

T ¼
X3
j¼1

SjBje
�mj zþixðx�ctÞ (29)

C ¼
X3
j¼1

V jBje
�mjzþixðx�ctÞ (30)

c ¼ B4e
�bzþixðx�ctÞ. (31)
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The displacement components u and w are obtained from Eqs. (12) on using solutions (28) and (31) we
obtain

u ¼ ix
X3
j¼1

Bje
�mj z � bB4e

�bz

 !
eixðx�ctÞ (32)

w ¼ �
X3
j¼1

mjBje
�mjz þ ixB4e

�bz

 !
xeixðx�ctÞ. (33)

The stresses can also be obtained in a similar manner.

5. Derivation of the secular equations

Upon invoking the boundary conditions (8)–(11) via relations (12) at the surface z ¼ 0 and using
Eqs. (28)–(31), we obtain a system of four simultaneous linear equations in the unknown amplitudes B1, B2,
B3, and B4 as follows:

pðB1 þ B2 þ B3Þ þ qB4 ¼ 0 (34)

f 1B1 þ f 2B2 þ f 3B3 þ pB4 ¼ 0 (35)

V1B1 þ V 2B2 þ V 3B3 ¼ 0 (36)

S1ðh�m1ÞB1 þ S2ðh�m2ÞB2 þ S3ðh�m3ÞB3 ¼ 0, (37)

where p ¼ b2 þ x2, q ¼ 2ixb, f j ¼ 2ixmj, j ¼ 1,2,3.
The system of Eqs. (34)–(37) has a non-trivial solution if and only if the determinant of the coefficients of

(B1,B2,B3,B4)
T vanishes. After applying lengthy algebraic reductions and manipulations, this leads to the

secular equations for the surface waves in the considered medium. We obtain

ðb2 þ x2Þ2F þ 4x2bG ¼ hfðb2 þ x2Þ2Fn þ 4x2bGng (38)

where

F ¼ m2S2ðV 1 � V3Þ þm3S3ðV 2 � V1Þ þm1S1ðV3 � V 1Þ (39a)

G ¼ m1m2V 3ðS1 � S2Þ þm2m3V 1ðS2 � S3Þ þm1m3V 2ðS3 � S1Þ (39b)

Fn ¼ ðV 1 � V 3ÞðS2 � S3Þ � ðV 2 � V3ÞðS1 � S3Þ (40a)

Gn ¼ m1ðV2S3 � V3S2Þ þm2ðV3S1 � V 1S3Þ þm3ðV1S2 � V 2S1Þ. (40b)

Eq. (38) is the required combined secular equation, which governs the propagation Rayleigh-type surface
waves in the considered media. For thermally insulated boundary (h-0) the secular equation (38) becomes

ðb2 þ x2Þ2F þ 4x2bG ¼ 0 (41)

and in case of isothermal boundary (h-N) it reduces to

ðb2 þ x2Þ2Fn þ 4x2bGn ¼ 0 (42)

where F ;G;Fn; and Gn are defined in Eqs. (39) and (40).
Eqs. (41) and (42) are the secular equations for Rayleigh surface waves in a half-space subjected to stress

free, isoconcentrated, thermally insulated and stress free, isoconcentrated, isothermal boundary conditions,
respectively. These frequency equations contain complete information regarding wavenumber, frequency and
phase velocity of the waves.
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6. Generalized thermoelastic waves

In the absence of MD (a ¼ 0 ¼ b2), the secular equation (38) takes the form

ðb2 þ x2Þ2ðm2
1 þm1m3 þm2

3 � a2Þ þ 4x2bm1m3ðm1 þm3Þ

¼ hfðm1 þm3Þðb
2
þ x2Þ2 þ 4x2bðm1m3 þ a2Þg. (43)

This leads to

ðb2 þ x2Þ2ðm2
1 þm1m3 þm2

3 � a2Þ þ 4x2bm1m3ðm1 þm3Þ ¼ 0 (44)

for thermally insulated (h-0) boundary of the half-space and

ðm1 þm3Þðb
2
þ x2Þ2 þ 4x2bðm1m3 þ a2Þ ¼ 0 (45)

in case of the isothermal (h-N) one.
Eqs. (44) and (45) are the secular equations that govern generalized thermo-elastic Rayleigh waves. These

equations are the same as obtained and discussed in detail by Nayfeh and Nasser [13] and also reported by
Dhaliwal and Singh [21]. The complex secular equation (38) and hence Eqs. (41) and (42) contain complete
information regarding phase velocity, attenuation coefficient and wavenumber of the surface waves in the
considered environment.

Owing to the complex nature of these secular equations, the development of their analytical solution is a
cumbersome exercise. However, approximate and numerical techniques can be conveniently used to explore
various features of the waves. Therefore, here we have used irreducible Cardano’s method with the help of
DeMoivre’s theorem to obtain the complex characteristic roots a2

j ; j ¼ 1; 2; 3 of Eq. (24) and hence compute
complex roots a2, b2, and m2

j ; j ¼ 1; 2; 3 given by Eq. (23). The secular equations (41) and (42) are then solved
for phase velocity and attenuation coefficient by using the functional iteration technique of numerical analysis
through the relation

C�1 ¼ V�1 þ io�1Q (46)

where V, Q, o are real numbers and

x ¼ Rþ iQ; R ¼
o
V
.

The specific loss factor being the measure of energy dissipation in a specimen through a stress cycle (DW) to
the elastic energy (W) stored in the specimen at maximum strain is also computed. For a sinusoidal plane wave
of small amplitude, Kolsky [20] shows that the specific loss DW/W equals 4p times the absolute value of the
imaginary part of x to the real part of x.

Hence,

DW

W

����
���� ¼ 4p

ImðxÞ
ReðxÞ

����
���� ¼ 4p

VQ

W

����
����. (47)

The thermo-mechanical coupling factor (K2) is defined as

K2 ¼
V ins � V iso

V iso

����
���� (48)

where Vins and Viso are the real phase speeds of the wave under thermally insulated and isothermal boundary
conditions prevailing at the stress-free surface of the material half-space.

7. Surface displacements, temperature change, and mass concentration

In this section, we derive expressions for surface displacements, temperature change, and mass concentration in
addition to the discussion of motion of surface particles. At the surface z ¼ 0 of the half-space, the displacements,
temperature, and mass concentration during the Rayleigh surface wave propagation are obtained as

uS ¼ jX jAeiðP�y1Þ (49)
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wS ¼ jY jAeiðP�y2Þ (50)

TS ¼ jYjAeiðP�y3Þ (51)

CS ¼ jZjAeiðP�y4Þ (52)

where

X ¼ ixð1þ L1 þM1Þ þ bN1; y1 ¼ ArgðX Þ

Y ¼ �ðm1 þm2L1 þm3M1 þ ixN1Þ; y2 ¼ ArgðY Þ

Y ¼ S1 þ S2L1 þ S3M1; y3 ¼ ArgðYÞ

Z ¼ V1 þ V 2L1 þ V3M1; y4 ¼ ArgðZÞ

A ¼ B1e
�Qx; P ¼ Rðx� VtÞ (53)

L1 ¼
f4x2bm3 þ ðb

2
þ x2Þ2gV 1 � f4x

2bm1 þ ðb
2
þ x2Þ2gV 3

f4x2bm2 þ ðb
2
þ x2Þ2gV 3 � f4x

2bm3 þ ðb
2
þ x2Þ2gV 2

M1 ¼
f4x2bm1 þ ðb

2
þ x2Þ2gV 2 � f4x

2bm2 þ ðb
2
þ x2Þ2gV 1

f4x2bm2 þ ðb
2
þ x2Þ2gV 3 � f4x

2bm3 þ ðb
2
þ x2Þ2gV 2

N1 ¼
2ixðb2 þ x2Þ2fðm2 �m1ÞðV 3 � V1Þ � ðm3 �m1ÞðV2 � V 1Þg

f4x2bm2 þ ðb
2
þ x2Þ2gV 3 � f4x

2bm3 þ ðb
2
þ x2Þ2gV 2

. (54)

Thus, there exist phase differences between different pairs of quantities u, w, T, and C being complex quantities.

8. Motion of surface particles

Now we shall discuss motion of a typical surface particle during the Rayleigh surface wave propagation. On
eliminating P from the surface displacements uS and wS in Eqs. (49) and (50), we obtain

u2
S

jX j2
�

2uSwS

jX jjY j
cosðy1 � y2Þ þ

w2
S

jY j2
¼ A2 sin2ðy1 � y2Þ. (55)

Because

cos2ðy1 � y2Þ
jX j2jY j2

�
1

jX j2jY j2
¼
�sin2ðy1 � y2Þ
jX j2jY j2

o0

so Eq. (55) represents an ellipse with semimajor axis (a*), semiminor axis (b*) and eccentricity (e),
given by

an2 ¼
A2

2
jX j2 þ jY j2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX j2 � jY j2
� �2

þ 4jX j2jY j2cos2ðy1 � y2Þ
q� 	

(56)

bn2

¼
A2

2
jX j2 þ jY j2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX j2 � jY j2
� �2

þ 4jX j2jY j2cos2ðy1 � y2Þ
q� 	

(57)

e2 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX j2 � jY j2
� �2

þ 4jX j2jY j2cos2ðy1 � y2Þ
q

jX j2 þ jY j2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX j2 � jY j2
� �2

þ 4jX j2jY j2cos2ðy1 � y2Þ
q . (58)

The inclination ðdnÞ of wave normal with the major axis of the elliptical path of a typical particle is also
computed and is obtained as

tanð2dnÞ ¼
2 tan yðjX j2 � jY j2Þ þ 2jX jjY j cosðy1 � y2Þð1� tan2 yÞ
ðjX j2 � jY j2Þð1� tan2 yÞ � 4jX jjY j cosðy1 � y2Þ tan y

(59)
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where y is the inclination of wave normal with the z-axis. As we are dealing with Rayleigh surface waves, so
usually y ¼ p/2 and hence we obtain

dn ¼
1

2
tan�1

2jX jjY j cosðy1 � y2Þ
jX j2 � jY j2

� �
. (60)

Clearly, the particle paths becomes linear when there is no phase difference between the functions uS and wS.

9. Numerical result and discussion

In order to illustrate and verify the analytical results obtained in the previous sections, we present some
numerical simulation results. The materials chosen for this purpose are copper (solvent) and zinc (solute),
whose physical data are given as follows:

l ¼ 8:2� 1010 Nm�2; m ¼ 4:2� 1010 Nm�2; r ¼ 8:950� 103 kgm�3

T0 ¼ 300�K; Ce ¼ 0:8298� 10�3 J kg�1 K�1; K ¼ 1:13� 102 Wm�1 s�1 K�1

aT ¼ 1:0� 10�8 K�1; D ¼ 0:34� 10�4 m s�1ðZn2CuÞ; �T ¼ 0:00265

b1 ¼ 3300Nm�2K�1; b2 ¼ 330Nm�5K�1; o� ¼ 1:11� 1011 s�1

ac ¼ 1:0� 10�9 K�1; a ¼ 0:1521� 102 m s�1; b ¼ 0:02� 10�4 m s�1.

After computing the complex roots given by Eq. (24) with the help of reduced Cardano’s method and using
these in various relevant relations, the secular equations (41) and (42) are then solved to obtain the phase
velocity and attenuation coefficient by using the iteration method. The phase velocity and attenuation
coefficient have been computed for various values of the real wavenumber from secular equations (41) and
(42) for insulated and equipotential boundary conditions of thermal and concentration fields by developing a
FORTRAN program on an IBM PENTIUM-IV computer. In Figs. 1–5, the solid curves correspond to the
stress free, isothermal, and isoconcentrated boundary of the half-space and dotted curves refer to the stress
free, insulated boundary conditions of the considered half-space. In Fig. 6, the solid curve corresponds to
coupled thermoelasticity and the dotted to that of the generalized theory of thermoelasticity.

In Fig. 1, the phase velocity is plotted with respect to wavenumber on the semilogarithmic scale. It is
observed that the phase velocity decreases sharply from a high value at vanishing wavenumber in the range
0pRp1, it attains minimum value in the region 1pRp2 and becomes almost constant for RX2, in case of
both isothermal and thermally insulated boundaries of the half-space. The value of phase velocity in case of
isothermal boundary of the half-space is observed to be significantly large as compared with the thermally
insulated one in the wavenumber range 0pRp1. Moreover, negligibly small effects of relaxation time are
observed on the phase velocity, in both the considered cases, because the two curves for (t0 ¼ 0 ¼ t1) and
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ðt0 ¼ 0:5; t1 ¼ 0:4Þ almost overlap. From Fig. 2, it is observed that the attenuation coefficient for both cases of
boundary conditions increases from a value very near to zero at vanishing wavenumber in the range 0pRp1
and then decreases for 1pRp2, before becoming steady and stable afterwards for RX2. The variation in the
magnitude of attenuation is quite dispersive in the range 0pRp2 for isothermal and isoconcentrated
boundary conditions prevailing at the surface of the half-space as compared with the insulated one. From
Figs. 3 and 4, it is noticed that the phase velocity and attenuation coefficient are constant with respect to
relaxation time for both the considered cases of boundary conditions of the half-space. The magnitudes of
phase velocity and attenuation coefficient are higher for isothermal as compared with thermally insulated
boundary of the half-space. This shows that thermal relaxation time has significantly large effects on the
considered quantities at isothermal conditions as compared with that in of the insulated one.

It is revealed from Fig. 5 that the specific loss factor of energy dissipation, a measure of internal friction of
the material (mapped on semilogarithmic scale), decreases from a highest value at vanishing wavenumber in
the wavenumber range 0pRp1 for insulated conditions and 0pRp2 for the isothermal one before becoming
stable and steady for RX2 in both cases. In the wavenumber range 0pRp2, the specific loss profiles in case of
insulated and isothermal boundary conditions are at a significant departure from each other, although both
are dispersive in character. This clearly depicts the effect of the boundaries on the propagation characteristics
of the surface waves in the considered environment.
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Fig. 6 shows the variations of thermo-mechanical coupling factor (K2) in coupled (t0 ¼ 0 ¼ t1) and
generalized ðt0 ¼ 0:5; t1 ¼ 0:4Þ theories of thermoelasticity with wavenumber. In both cases, the magnitude of
the thermo-mechanical factor is large at vanishing wavenumber, which decreases sharply in the wave range
0pRp7. For coupled theory, it becomes zero at R ¼ 7 and then increases in the range 7oRo8. The
wavenumber varyies steadily afterwards for RX8, for both cases. This clearly depicts the effect of thermo-
mechanical coupling among various interacting fields. This phenomenon is quite physically realistic because
for long wave length waves the effect of coupling among various considered field quantities is quite
predominant because of their deep penetration into the medium. The coupling among various interacting
fields ceases to zero in case of short wave length waves because they mainly travel along the surface without
much penetration into the medium thereby less disturbance to the interacting fields.
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